

PhD Workshop '24

Data Management for mobile applications dependent on geo-located data

Luís M. Silva

02 Out 2024

Motivation

- Mobile devices have become the preferred platform for deploying new applications.
- Some applications need to share and manipulate location-dependent data.
- Examples of those applications are vehicular applications or mobile multiplayer games.

Motivation

- The user's interest in data directly correlates to its distance to that data.
- Storage maintains a single data model, and consistency is uniform for all data.

Motivation

- The user's interest in data directly correlates to its distance to that data.
- Storage maintains a single data model, and consistency is uniform for all data.

The Problem

 No data management system supports both dynamic data models and tunable consistency constraints on a mobile environment for location-dependent data.

Desired properties

- Adaptive Data Detail Exposure
- Exploiting all the system components' locations for performance gains.
- As the distance between a user and data increases, the detail is intended to diminish gradually and gracefully.
- It is a requisite to provide a flexible non-uniform data model.

Desired properties

- Dynamic Inconsistency Management
- The data model allows consistency models with fine-grained control
- The system can adjust the frequency of updates to manage the degree of inconsistency.

Summary

- Introduced FocusDB: a system for geo-located data in mobile environments
- Data model that accounts for objects and client locations
- Levels of detail based on client location
- Adaptive consistency guarantees based on client interest
- Drawbacks: increased metadata traffic and cloud storage usage

Thank You!

Desired properties

- Proximity-based Interest and Explicit User Preferences
- The system is not aware of the user's intentions.
- We need a mechanism that informs the system of the user's interest.

FocusDB

 Cloud Side responsible for allowing data access and manipulation methods

Database

Focus DB API

View Manager

Notification Sys

Client Side interacts with the cloud using a library

Focus DB Client lib

Data Model

Spots	Streets View	Neighborhood View
(Street1, △) (Street1, ○) (Street1, □) (Street2, ○)	(Street 1, 3) (Street 2, 1)	(Business District, 4)

Street 1 Street 2

Spots	Streets View	Neighborhood View
(Street1, \triangle) (Street1, \bigcirc) (Street1, \square) (Street2, \bigcirc)	(Street 1, 3) (Street 2, 1)	(Business District, 4)

Street 2

Home

Spots	Streets View	Neighborhood View
(Street1, \triangle) (Street1, \bigcirc) (Street1, \square) (Street2, \bigcirc)	(Street 1, 3) (Street 2, 1)	(Business District, 4)

Spots	Streets View	Neighborhood View

Spots	Streets View	Neighborh View
(Street1, \triangle) (Street1, \bigcirc) (Street1, \square) (Street2, \bigcirc)	(Street 1, 3) (Street 2, 1)	(Business Distr
		(Business Distr

Spots	Streets View	Neighborhood View

Spots	Streets View	Neighborhood View
		(Business District, 4)

Spots	Streets Viev
(Street1, △) (Street1, ○) (Street1, □) (Street2, ○)	(Street 1, 3) (Street 2, 1)

View

(Street 1, 3)

(Street 2, 1)

Spots

View

Spots	Streets View	Neighborhood View
(Street1, △) (Street1, ○) (Street1, □) (Street2, 〈)	(Street 1, 3) (Street 2, 1)	(Business District, 4)

Client

Neighborhood

(Business District, 4)

Client

Streets View (Street 1, 3) (Street 2, 1)

Spots

(Street1, ○) (Street1, ○) (Street1, □)

(Street2,)

Spots	Streets View	Neighborhood View
(Street1, \triangle) (Street1, \bigcirc) (Street1, \square) (Street2, \bigcirc)	(Street 1, 3) (Street 2, 1)	(Business District, 4)

Streets View (Street 1, 3) (Street 2, 1)

Client

Neighborhood

(Business

District, 4)

Spots	Streets View	Neighborhood View
(Street1, \triangle) (Street1, \bigcirc) (Street2, \bigcirc)	(Street 1, 2) (Street 2, 1)	(Business District, 3)

District, 4)

Spots	Streets View	Neighborhood View
(Street1, \triangle)	(Street 1, 1)	(Business District, 1)

Neighborhood View

(Business District, 1)

Street 1 Street 2

Spots
(Street1, △)

- While this work is still a work in progress, we've already conducted some preliminary experiments and evaluations.
- Does using a flexible non-uniform data model translate into benefits of performance?

- Where to Park? Application
- Built a workload generator that mimics multiple mobile clients
- Prototype of FocusDB, plus two additional architectures
- Evaluated throughput and latency as a function of the number of clients and the total number of client requests

- Two datasets
 - one for client movement
- the other for object placement (Parking Spots)
- Clients follow a path with Parking Spots in that route.

- A client initiates a request by specifying the end location of the trip, which indicates the interest set regarding parking spots
 - Client receives 3 levels of detail during the trip
 - Neighbourhood view -> Multiple street view -> Street view
- 5 Trips per Client per Test
- 80% aggregations and 20% full objects

- Two different implementations
- FocusDB prototype (FOCUS)
- MongoDB Queries with indexes on relevant attributes (INDEX)

Future Work

- Formalise the consistency model.
- Continue to explore location as a property for implementing efficient replication protocols.
- Expand the system model to a hierarchical cloud edge.

Summary

- Introduced FocusDB: a system for geo-located data in mobile environments
- Data model that accounts for objects and client locations
- Levels of detail based on client location
- Adaptive consistency guarantees based on client interest
- Drawbacks: increased metadata traffic and cloud storage usage

Thank You!