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Abstract. With the rise of mobile applications such as Waze and Poke-
mon GO, the greater focus towards social and collaborative features in
modern applications is hard to ignore. In such applications, users’ inter-
est lay on what is around their immediate surroundings, as opposed to
what is happening in areas distant from their current location. Legion is
a system that reduces latency and relies less heavily on servers, by en-
abling client devices to communicate with one another in a peer-to-peer
fashion. However, clients are forced to share all application data with
one another. While this improves user experience, it makes clients keep
data that may not be relevant to them, especially if such data is in some
way related to their geographic position. In this case, clients should not
have to receive information that is too distant to be of any relevance to
them. We aim to address this, making it so that clients only keep data
that is of their interest, in other words, that is close to their geographic
position.

Keywords: Peer-to-peer · Location-based replication · Mobile applica-
tions · Legion · SAMOA.

1 Introduction

As modern applications shift more and more towards a standard of greater inter-
action between people, meeting the new demands that arise with this paradigm
shift is essential to captivate users and keep them engaged. One such demand
is that applications become more responsive and sturdy, allowing for quick re-
sponses to user input and continued use after the servers become unavailable.

For applications that are implemented using a centralized infrastructure, not
only is this an almost guaranteed impossibility, but such approaches present
additional inconveniences. By allowing servers to mediate all user interactions,
they become a scalability bottleneck. As more and more clients connect to it,
the amount of work that has to be done by a server to not only answer all
incoming user interactions, but also to make sure that other clients become aware
of such interactions, increases in a polynomial fashion. On top of this, users that
are close to one another are forced to communicate via the server, which often
leads to a considerable increase in latency. To mitigate this situation, Legion [1]
was created, relying on direct interactions between clients, therefore making the
system less dependent on a centralized infrastructure and, consequently, reducing
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latency and avoiding potential bottlenecks. However, because Legion forces users
to exchange all application data, they will inevitably receive information that is
potentially useless to them, should that information be related to a geographic
position that is simply too far away to be of any interest.

Our aim is to improve the framework further so as to better cater to the needs
of modern-day users, by enabling them to receive data based on their current
geographic position, much like what is being done with applications such as
Waze, Pokemon Go and Foursquare. We hope that, by doing so, the amount of
unnecessary data traded between peers decreases, thus expanding the benefits
of Legion as a peer-to-peer replication mechanism.

To do this, a new protocol was developed. It allows for users to connect to
other nearby users and exchange object information with them, while ensuring
that any data received pertains to objects that are physically close to the location
of the receiver. As a client moves, objects that are too far away are discarded and
connections to distant peers are closed. By the same token, connections to new
peers are formed and information pertaining to nearby objects is acquired, which
is sent to the client either via the server or via that client’s peers themselves.

Our protocol, much like what had already been observed in previous tests [1]
with Legion, has shown to have lower latency than a client-server model. On
top of that, it also performs better than the original protocol of the framework
under certain conditions, specifically when the interactions between users and
objects are plentiful.

In the following pages we will explore how this solution came to be, what
sort of challenges and problems shaped it into what it is, and how it compares
to the client-server and original Legion models.

2 Related work

In this chapter, we survey the core concepts directly associated with this work
and compliment with some analysis on the state-of-art in the relevant fields.

2.1 Causality

Causality pertains to how the execution of an operation may affect the execution
of other operations in a given environment, as well as be dependent on operations
that came before it. To better understand this concept, we will start by taking a
look at causal relations between operations, and then we will try to understand
what causal consistency [2] is and how we can achieve it.

Causal relations Causal relations can be observed when the operations taking
place in a system are potentially causally linked. In other words, if we have two
operations x and y, then x can be the cause of y if and only if they both occur in
the same node and x was the first to execute, or, in the event that they execute
on different nodes, if y is informed about the execution of x via some message
received from a node that knows about x.
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Let us take a look at the three general scenarios that can happen when it
comes to causal relations between operations. Edges from x to y indicate that y
depends on x:

Client 1

Client 2

Client 3

get(i)=1 put(i,2)

get(i)=2 put(j,3)

get(j)=3 get(i)=2

Time

Fig. 1: Example of causal relations be-
tween operations

Fig. 2: Version vectors (from [3])

1. If x and y are two operations in the same node, then y depends on x if x
happens before y. We can see an example of this in Client 1 of Figure 1,
where put(i,2) depends on get(i)=1.

2. If x is a put operation and y is a get operation that returns the value written
by x, then y depends on x. This can be seen in the edge connecting the
put(i,2) operation in Client 1 with the get(i)=2 operation in Client 2.

3. For operations x, y and z, if y depends on x and z depends on y then z
depends on x. This transitive property allows us to see that get(i=2) in
Client 3 depends on put(j,3) in Client 2.

Causal consistency Causal consistency guarantees that an operation o is only
executed in a replica after all operations that happened before o have been pre-
viously executed. There are various different manners of enforcing causal consis-
tency. One such manner would be to use version vectors [2], where an operation’s
dependencies are sent with the operation itself. This way if, upon reception, all
dependencies are not satisfied, the node will already have the necessary knowl-
edge to determine which operations are missing. Figure 2 illustrates how version
vectors work.

If we take a look at node B for instance, we can see that it has a vector of
[0,1,0]. It then receives a message from A, and with that message it is able to
determine which operations A has already executed. It can then take its vector,
a new operation it executed, and the [1,0,0] vector received from A and merge
them into a new vector that contains all that information, [1,2,0]. Note that
version vectors will only record important events (such as writes), which is why
the next operation in B is still [1,2,0] instead of [1,3,0].

2.2 CRDTs

CRDTs [4] (Conflict-Free Replicated Data Types) are data structures that allow
for guaranteed eventual consistency, through the usage of replicas. A replica is



4 F. Aleixo

free to execute an operation without having to immediately synchronise with
other replicas, as the operation is eventually sent in an asynchronous manner to
those replicas. All replicas end up applying all the updates (which may or may
not be applied in different orders), thus preserving consistency.

There are three different styles of synchronisation used by CRDTs:

– State-based (passive) replication, in which the system transmits the state
of the updated source replica to other replicas, to propagate changes. The
receiving replicas will merge their current state with the one they receive.

– Operation-based (active) replication, where the system transmits operations
that mutate the state of the source replica (these operations are known as
updates). In order to achieve this, every update must reach the causal history
of every replica eventually.

– Delta-based replication, where state changes taking place in a replica are
stored in a delta, which is then sent to other replicas so that they can update
their own state with the received changes.

CRDTs support numerous already existing data structures, such as Counters,
Registers and Sets (from which Maps, Graphs and Sequences are derived).

2.3 Vector-Field Consistency

Vector-Field Consistency [5] (VFC) allows to strengthen or weaken replica con-
sistency. Using distributed multiplayer games as an example, the consistency of
the data may may change depending on the current game state.

The consistency of any given object depends on that object’s distance from
a pivot. The pivot has a position in the virtual world, which can change over
time. Object consistency is determined through consistency zones, which are
concentric areas generated around pivots in such a way that objects positioned
within the same consistency zone have to abide by the same consistency degree.

In short, VFC allows programmers to express the consistency requirements
that their applications need easily. It is also noteworthy that they are widely
applicable, not being restricted to game development.

3 Algorithm for geo-partial replication

In this section, we will examine the various parts that make up the protocol in
detail, explaining what hurdles justify their existence and what role they play in
the final solution.

3.1 System model

In our system, we assume that clients communicate over a fixed infrastructure
(5g, Wi-fi), i.e., nodes do not communicate directly in an ad-hoc fashion. Both
the signalling server as well as the objects server are running in the cloud. A set
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of objects exists, which are replicated by the nodes in the system. Geographic
positions are associated to both objects and nodes, with nodes only being inter-
ested in objects that are physically close to their position. Lastly, certain objects
are replicated in every node, similarly to what happens in Legion’s base model.

3.2 Background

Legion is a framework that enables client web applications to replicate data from
servers using delta-based CRDTs [4], as well as synchronize these replicas among
them. Unlike systems that cache objects at the client-side, it allows clients to
synchronize directly among each other and with the server, using a peer-to-
peer model. To enable this, some clients are chosen to act as bridges between
the server and the other clients (these chosen clients are named active nodes).
These nodes are responsible for uploading updates executed by their peers and
downloading new updates that were executed by certain clients that did not
establish a direct connection to other peers, having only connected to the server.
We will now explore how some of these connections work in more detail.

Legion relies on two servers, one that mainly keeps track of all data structures
in use (named ObjectsServer), and another that focuses mostly on tasks such as
authenticating and managing client connections (named SignallingServer). Let
us take a look at Fig. 3 to understand how a network in Legion is formed.

Signalling
Server

Objects
Server

C1C2

Legend

Connection

Peer	Discovery

Server

Active	Node

Passive	NodeC3

Connection	from	
Peer	Discovery

Closed
Connection

Fig. 3: Legion overlay example

Initially, client (or node) C1 is connected to both servers. C2 then connects to
the network, and at this point both C1 and C2 would be in an active state, with
C2 also being connected to the servers. Through peer discovery, C2 discovers C1,
and establishes a P2P connection with it. A bully algorithm will then choose
which one of these two will remain in the active state, eventually picking C1
since it has a lower ID. C2 then becomes a passive client, closing its server
connections. Say client C3 was directly connected to C1. Using peer discovery,
C3 can establish a connection with C2 via C1, since C1 is already connected
with C2. Thus, the three nodes are able to communicate with one another yet
only C1 actually needs to interact with the servers.
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3.3 Partial replication

If we are to make it so that clients only receive data that is pertinent to them, the
full replication model that Legion uses had to give way to a partial replication
approach. This is because, with Legion in full replication mode, when a peer
first connects to another, it goes through a synchronization process. This process
involves an exchange of all data structures stored locally at each peer, as well
as all updates they may have over said structures. This process guarantees that
either peer is now entirely up to speed on everything the other one knows, but it
also means that they were forced to store data that may not have been pertinent
to them.

Addressing the challenge presented above required some changes to the syn-
chronization phase. Now, when a peer receives data sent by another peer, one of
two things may happen. If our peer is the objects server, then it is in the server’s
best interest to keep all the received data, just as before. However, if our peer
is a client, then all it will do with the data received is determine if there are
any objects that it already has locally stored. If so, he may send a record of all
known updates of said data structures to the peer. In turn, the peer will do the
same, so both of them end up with the same version of the data. Additionally,
each client keeps a record for every neighbour, on its interest in what structure,
so that any information sent after the synchronization phase will undoubtedly
be relevant to the receiver, ensuring that no client is ever required to store or
receive unnecessary data.

3.4 The GeoLocOverlay

Given that nodes follow a peer-to-peer replication model and that they are in-
terested in objects which are close to their geographic position, it is only logical
for the overlay they use to communicate to be associated with their location, so
that the replication only takes place in nodes that are interested in those objects.

In order for nodes to take positions into account when forming connections
with one another, a new overlay had to be designed. The initial idea was for
any peer who connects to the overlay for the first time to send a message to
the signalling server with its current position, so that the server could examine
each active node (and their position, which it would keep stored) and determine
the two closest active nodes to the new node. Then, it would send a message
to each of them with the position of the new peer, so that they could keep
propagating this message to the peer that is closest to the new node. When the
message reached a node that was close enough to the new peer, it would stop
being propagated and the two nodes would connect. Then, it would be a matter
of sending the location of our other adjacent peers to the new peer so that he
would find out about other nodes in the vicinity and decide to which of them it
should connect to.

While this approach seemed reasonable at first, it had two shortcomings. The
first was that the number of messages that would be propagated throughout the
overlay would explode, severely affecting the efficiency of the protocol. Secondly,
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there could be a scenario where, despite two nodes being close enough to one
another, they would be unable to realize that and would never connect. Figure 4
exemplifies this.

Signalling
Server

C2C1

Legend

Connection

Close	proximity

Server

Active	Node

Passive	Node

C4C3

Fig. 4: Proximity detection failure

We can look at the figure as if we had two separate branches of connected
nodes, the left branch which contains nodes C1 and C3, and the right branch
with C2 and C4. As we can see, the nodes at the end of each branch are close
enough to one another to be able to form a connection, yet it is impossible for
them to do so because they will never acknowledge each other. C3 will only ever
know the positions of its peers and, at most, of the peers of its peers, which
means that the only node that it knows the position of is C1. A similar situation
is happening in C4, with C2 being the only node it knows the position of.

Because relying so heavily on nodes to decide what connections should be
formed had shown to be a rather naive approach, it was decided that the server
should have a more prominent role in this. If the server keeps a record of all
node positions, then nodes can easily contact the server to discover new peers
and receive an answer directly from it, without the need to propagate nearly
as many messages throughout the overlay as before and without causing the
disconnected branches scenario to ever happen.

The final overlay (named GeoLocOverlay) keeps all nodes directly connected
to the signalling server. The pseudo-code for the overlay can be found below.
When a new node joins (line 7), it will send its position to the server, and in
turn, the server will return with a list of all nodes that are physically close to
it (line 66). When a node moves a certain amount of units since the last time
it updated its position, it sends a message to the server with its new position
(line 57) and, once again, receives a list of nodes that are nearby (line 66). It
also informs its current peers of its current position (line 59), so that they do
not need to wait for the next server update to register this new information.

Since this protocol is not intended to be uniquely dependent on a central
server, should a node become disconnected from the signalling server, it will send
its new position to its peers (line 54), so that they may acknowledge its location
and also propagate it to their neighbours. This case is of particular interest,
where a node moves to a distinct location, and nodes that in the logical level are
distant, upon realising that a new node is close by, become interested in forming
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a connection with it. This allows the node to keep forming new connections even
when it is not connected to the server (line 37), but as we have previously seen,
without the help of the signalling server there are some connections that the
node will be unable to form on its own.

Periodically, nodes will remove peers that are too far away (line 16). And, in
case a maximum number of connections hasn’t been reached, the protocol dic-
tates that nodes try to connect to other nodes of interest in the neighbourhood,
making them peers (line 19).

Nodes have two distinct ways to realise which of their neighbours are of
interest: they can either make use of the server messages containing the IDs of
all nearby nodes (line 10), which are received every time an update is sent to
the server, or receive a new node’s position via the messages sent from their
neighbours, when the signalling server is unavailable (line 37).

This approach solves the issues we previously had, and although the number
of messages that pass through the network is still considerable, it is nowhere
near as high as it would be using the first protocol.

1 GeoLocOverLay {
2 let lastSentPos = currentPos; //Last sent position to server & peers
3 let peersOfInterest = new Set(); // Peers that are close to our position
4 const MAX_DISTANCE = 20; // Maximum distance allowed between connected peers
5 const MAX_PEERS = [1 to 10]; //Max no. of peers that can be connected to us
6
7 function onServerConnection () //Send our position to the server so that it

can tell us what our nearby peers are
8 serverConnection.send(currentPos);
9

10 function onServerResponse(message)
11 for each peerID in message.peerIDs
12 if(! ourPeers.contains(peerID))
13 peersOfInterest.add(peerID);
14
15 function updateConnections ()//Every 5000ms or so update our peer

connections
16 removeDistantPeers (); // Disconnect from peers that are too far away
17 if(peerCount < MAX_PEERS)
18 let remainingSlots = MAX_PEERS - peerCount;
19 /** For each ID in peersOfInterest , send it a join request and

decrement remainingSlots. If remainingSlots == 0, stop */
20 if(peerCount > MAX_PEERS)
21 removeMostDistantPeer ();
22
23 function onPeerJoinRequest(message)
24 if(peerCount < MAX_PEERS && !ourPeers.contains(message.sender))
25 let dist = distance(message.senderPos , currentPos);
26 if(dist <= MAX_DISTANCE)
27 connectPeer(message.sender);
28 else
29 peersOfInterest.delete(message.sender);
30
31 function onPeerConnection(peerConnection) //When we connect to a peer
32 peersOfInterest.delete(peerConnection.ID);
33 toPropagate = true; // Enables our peers to send our position to other

neighboring peers in case the server becomes unavailable
34 peerConnection.send(currentPos , toPropagate);
35
36 function onPeerPosition(message)
37 if(! message.toPropagate) // Receiving pos info of a new node (only true

when the server is unavailable)
38 /** If the pos is close enough , add the node to our peersOfInterest */
39 else // Receiving pos info from one of our peers
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40 updatePeerPos(message.sender , message.pos);
41 sendPositionToPeers(message);
42
43 function sendPositionToPeers(message)
44 if(message) //If we’re propagating a peer’s position
45 if (/**we aren’t connected to the signalling server */)
46 message.toPropagate = false; //Acts as a TTL of 1 to propagate the

message through a single logical layer
47 let except = message.visitedIDs;
48 sendToPeers(message , except);
49 else
50 let visitedIDs = [];
51 for each peerID in peers
52 visitedIDs.push[peerID ]; //Let our peers know that we have already

sent the message to these peers
53 let toPropagate = true;
54 let message = generateMessage(currentPos ,visitedIDs ,toPropagate);
55 sendToPeers(message);
56
57 function updatePosition () //Every 5000ms or so
58 if( distance(lastSentPos , currentPos) > MAX_DISTANCE)
59 /** Send our new position to our peers and the server */
60 lastSentPos = currentPos;
61 }
62
63 ServerSide {
64 let nodesPos = new Map(); //Key: client ID; Value: node pos
65
66 function onNodePos(client , pos)
67 nodesPos.set(client , pos);
68 //** for each node in nodesPos , if it is close enough to the client , send

its ID to the client */
69
70 function onClientDisconnect(client){ nodesPos.delete(client) }
71 }

3.5 The Objects Bully

Now that peers are able to establish connections amongst each other based on
physical proximity, we need to ensure that the bullies who act as bridges between
the objects server and their peers are properly distributed.

Using the current protocol to achieve this, because it relies solely on the ID
of nodes in the overlay to compare them and decide who the bullies are, the
nodes with the lowest IDs are automatically the best option. While this protocol
was more than sufficient when all clients were interested in all objects, now that
clients are most often only propagating a small subset of all available objects,
it can result in some undesirable situations. To exemplify, it could happen that
the designated bully in a specific group of nodes isn’t interested in the entirety
of objects that the group is. This implicates that information regarding objects
that the bully is not interested in would never be sent to it (since as we have seen,
data will only get sent to a peer if it belongs to an object that it is interested
in), and therefore would never reach the objects server. This would nullify any
attempt to safely store the new state of that object in the server.

To mend this situation, a new bully protocol was created. This new protocol
works slightly differently from the previous one, in the sense that nodes no longer
have just a single bully attributed to them, but instead have a bully per object
they are currently interested in. The idea behind this concept is that, if for every
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object a node is currently propagating, it is able to find a peer that is not only
interested in that object, but also has an open connection to the objects server,
then it can designate that peer as the bully for that specific object. If a node
is able to do this for every object it is propagating, then it knows that it no
longer needs to keep a connection to the objects server open, since it can rely on
its peers to relay the information it sends regarding those objects to the server.
Figure 5 illustrates this more clearly.
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Fig. 5: Objects bully

Reading the image from top to bottom, left to right, in the first scenario we
can see that all nodes are connected to the ObjectsServer, and for each object
they are interested in (depicted by the smaller geometric shapes) they have set
themselves as the bully.

In the next scenario, node C1 sends a bully message to C3 letting it know
that it is currently a bully for the circle and square objects. Upon receiving this
message, C3 will compare its current bully for the circle and square with C1,
using the same principle as before in which the bully with the lowest ID is the
best one. As C1 has a lower ID than C3, C3 updates the bully for those objects,
setting the node with ID 1 as the new bully.

Moving to the bottom left, a similar event takes place, in this case with
C2 sending a message to C3 telling it that it is currently being a bully for the
triangle object. C3 compares both IDs once more, determines that C2 is a better
bully than itself, and so sets C2 as the bully for the triangle.
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Lastly, C3 has now managed to define a bully other than itself for each of
its objects, which means that it is safe for it to close its server connection, since
it knows that any information sent to its peers regarding the objects will be
relayed to the ObjectsServer by them.

With the new bully protocol implemented, we can now ensure that any node
executing operations on any object will be able to send those changes to the
objects server, whether via a direct connection to the server or via a peer that is
connected to it. By the same token, if a node arrives at a location where there is
an object of interest for which there is no bully among the node’s peers, the node
itself will connect to the objects server (if it was not connected already) and in
this manner it is able to obtain the object and interact with it, even if none of
its peers were doing so. The pseudo-code for this protocol is the following:

1 ObjectsBully{
2 let bullies = new Map(); //Key: objectID; Value: bullyID
3 let objectIDs = objectStore.objectIDs;
4
5 for each objID in objectIDs //On startup , we are the bully for all objects
6 bullies.set(objID , thisNode.ID);
7
8 function floodInterval () // Every 8 seconds or so let our peers know the

objects that we are bullies for
9 for each ID in objectIDs

10 floodBully(ID);
11
12 function floodBully(objID)
13 if (/**we have no bully for objID or if we’re the bully*/)
14 // Message peers interested in objID that we’re bullies for it
15
16 function onMessage(peerID , peerObjID , connection)//On bully msg
17 if (/**peerID <= ID of our current bully for object peerObjID OR no

bully is defined for object peerObjID */)
18 bullies.set(peerObjID , peerID); //Make peerID the new bully
19 setBullyTimeout(peerObjID);
20 else
21 if we are a bully for peerObjID AND peerID > myID
22 //Reply to peerID so he knows we’re a better bully for objID
23
24 function onClientDisconnect(peerConnection)
25 for each objID in objectIDs
26 if(peerConnection.ID == bullies.get(objID))
27 if objID is in our possession
28 bullies.set(objID , myID);
29 else
30 bullies.delete(objID);
31
32 function onServerConnect ()
33 for each objID in objectIDs
34 if (/**we have no bully for objID or we’re the bully*/)
35 floodBully(objID);
36
37 function setBullyTimeout(objID)
38 /**After the timeout , become the bully for objID again*/
39 }

4 Evaluation

To test the correctness of the new protocol, initial tests consisted of simulating
several simple scenarios in which nodes would be placed in specific or random
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positions, with the goal of observing how they conducted themselves when it
came to connecting to new nodes, disconnecting from far away nodes and trading
object information between one another.

We then advanced to a more interesting testing scenario, one that would
attempt to emulate an app such as Foursquare [6]. Foursquare allows users to
discover information about nearby locations, enabling them to perform a “Check
In” to obtain a list of nearby places. Users may also use the “Explore” feature to
search for a specific type of location using different categories, as well as leave a
review after visiting a place. Our application works in a similar manner to some
degree, with clients receiving data on nearby objects and being able to interact
with them. Depending on the test, these objects can either be CRDT counters
that simulate some sort of like/dislike counter, or CRDT maps where strings are
stored, to mimic leaving a comment or review.

To simulate the positions of both clients and objects, we made use of two
datasets. One of these datasets contains the geographical coordinates of several
taxi trips in the city of Porto, while another has the positions of bus stops in
that same city. The first dataset will be used to simulate client movement, and
the second dataset will be used to choose potential object positions. With the
information from these datasets, we will use three different overlay models to
conduct our tests: the GeoLocOverlay in partial replication mode ( glo-partial),
in full replication mode ( glo-full), and the client-server overlay in partial repli-
cation mode, which will disable any sort of peer-to-peer interaction. We aim to
answer the following questions:

1. How is the total number of messages sent to and from the signalling and
objects server affected when we compare the client-server model and the
initial full-replication Legion with the partial replication model?

2. How is the total number of bytes sent to and from the signalling and objects
server affected when we compare the client-server model and the initial full-
replication Legion with the partial replication model?

3. What are the maximum and minimum number of messages sent by any given
node in each of the three different scenarios? On average, how many messages
are sent by nodes?

4. What are the maximum and minimum number of bytes sent by any given
node in each of the three different scenarios? On average, how many bytes
are sent by nodes?

5. Is there an improvement in latency when we use the GeoLocOverlay in place
of the client-server overlay?

We created scenarios with 5 clients moving through routes of 40 positions,
extracted from the taxi trips dataset. The selected routes are close to one another
to ensure clients can connect to each other at some points. Additionally, 50
objects are also created, with their positions taken from the bus stops dataset.
These positions were picked in a manner that ensures that, for any object, a
client will interact with it at some point. Some clients share objects for a certain
period of time, while other clients are the only ones interacting with certain
objects.
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4.1 Like Counter

In this scenario, the created objects are CRDT counters. Clients will increment
all nearby counters by one every three seconds. When a client approaches a
counter, it receives the current state of the counter either via synchronising with
its peers or, if no peers are interested in that object, via the objects server. When
a client moves too far away from a counter that it was interested in, the counter
is removed from that client’s local CRDT storage.
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Fig. 6: Like counter - message number
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Fig. 7: Like counter - byte number

As can be seen in figure 6, using the new overlay with partial replication
results in an overall lower number of messages traded between nodes and the
objects server and amongst peers when compared to the full replication model.
While the client-server model (in partial replication mode) still manages to have
slightly less messages sent to the objects server than the glo-partial model, the
number of sent messages from the objects server has been reduced significantly,
not only because not all peers require to keep an open connection to the objects
server as they do in the client-server model, but also because they will only
receive data that is relevant to them, unlike what happens in the full replication
model.
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What can be seen in the figure 7 mimics what the previous figure, albeit at
a different scale. This is because the many operations that are executed on each
object (which are increments of one) do not require a lot of bytes to be sent
at a time. In the next scenario we will see that, because we have much fewer
operations but each of them involves a higher amounts of bytes, exchanging fewer
messages does not necessarily translate to exchanging fewer bytes.

In summary, when it comes to communicating with the objects server, the
glo-partial model has come out on top. For everything else, the client-server
model manages to be the one that exchanges less messages and bytes.

4.2 Post Comment

The created objects in this scenario are CRDT maps. The first time a client is
close to a map, it will write to it using a randomly generated 10kb string. The
process of synchronising and discarding object data is identical to that of the
previous scenario.
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Examining figure 8, we can see that this time around the number of messages
traded between peers and sent from peers to the objects server was greater
in the glo-partial model than in the full replication one. We can understand
why this may be when we take into consideration that, unlike in the previous
scenario where a given node could interact several times with an object, in this
scenario each node will only interact with each object once. This means that a
good portion of the messages traded between peers were most likely bully and
peer discovery related messages as opposed to messages containing data on the
operations executed at each map.

It is interesting to note that, in figure 9, the partial model seems to fare much
better. If we compare the total messages received from peers with the number
of bytes received from peers for instance, despite peers sending more messages
to one another in the partial model, the total number of bytes sent is actually
lower than that of the full replication model.

To summarize, the client-server model has proven to send the least messages
and bytes in practically all interactions of all three models. However, compar-
ing the glo-partial model with the full replication model, the number of overall
exchanged bytes was still lower.

4.3 Latency Tests

In this scenario there is a single CRDT map shared between all clients. Every
10 seconds clients write to this map, and that write is propagated through the
overlay. As soon as a node receives a write, it prints the time elapsed since the
operation was executed in the original client until it was received. To more real-
istically simulate what would happen in a real life situation, artificial delays were
introduced. The values obtained represent the average latency of an operation
registered by a client.
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Fig. 11: Higher latency

In the first test, a delay of 5 milliseconds between peer to peer interactions and
40 milliseconds between peer-server interactions was considered. These values
were changed to 40 milliseconds and 100 milliseconds for the second test.

Both figures show that using the GeoLocOverlay results in lower latency,
which can be explained by the fact that nearby nodes are now able to commu-
nicate directly, without having to use the server as an intermediary.
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5 Conclusions

The objective of creating a protocol that enables clients to receive data based on
their current geographic position was accomplished. By making use of the new
overlay and bully algorithm, we ensure that clients are able to receive information
regarding nearby objects in a correct and efficient manner. We also guarantee
that, in the event that no clients are propagating an object, that object’s data
is safely stored in the objects server, so that the next client that propagates said
object may synchronize with it and obtain that object in its most recent state.

The obtained results have shown a considerable overhead associated with
nodes communicating their position to the signalling server and obtaining from
it the peers that are closest by. However, the number of messages sent to the
objects server saw only a slight increase, and the number of messages from that
same server was significantly reduced. Despite the fact that the client-server
model still remains the lightest of the trio when it comes to both messages as
well as bytes exchanged, the partial replication model using the GeoLocOverlay
has proven to not only offer reduced latency when compared to this one, but also
to exchange significantly less bytes and messages than the full replication model
in situations where the number of operations executed on objects is considerable.
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